The Second Euler-Lagrange Equation of Variational Calculus on Time Scales

نویسندگان

  • Zbigniew Bartosiewicz
  • Natália Martins
  • Delfim F. M. Torres
چکیده

The fundamental problem of the calculus of variations on time scales concerns the minimization of a deltaintegral over all trajectories satisfying given boundary conditions. In this paper we prove the second Euler-Lagrange necessary optimality condition for optimal trajectories of variational problems on time scales. As an example of application of the main result, we give an alternative and simpler proof to the Noether theorem on time scales recently obtained in [J. Math. Anal. Appl. 342 (2008), no. 2, 1220–1226]. Mathematics Subject Classification 2000: 49K05, 39A12.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

An analytic study on the Euler-Lagrange equation arising in calculus of variations

The Euler-Lagrange equation plays an important role in the minimization problems of the calculus of variations. This paper employs the differential transformation method (DTM) for finding the solution of the Euler-Lagrange equation which arise from problems of calculus of variations. DTM provides an analytical solution in the form of an infinite power series with easily computable components. S...

متن کامل

Necessary optimality conditions for the calculus of variations on time scales

We study more general variational problems on time scales. Previous results are generalized by proving necessary optimality conditions for (i) variational problems involving delta derivatives of more than the first order, and (ii) problems of the calculus of variations with delta-differential side conditions (Lagrange problem of the calculus of variations on time scales).

متن کامل

ar X iv : 0 70 9 . 04 00 v 1 [ m at h . O C ] 4 S ep 2 00 7 Noether ’ s Theorem on Time Scales ∗

We show that for any variational symmetry of the problem of the calculus of variations on time scales there exists a conserved quantity along the respective Euler-Lagrange extremals. Mathematics Subject Classification 2000: 49K05, 39A12.

متن کامل

Generalizing the variational theory on time scales to include the delta indefinite integral

We prove necessary optimality conditions of Euler–Lagrange type for generalized problems of the calculus of variations on time scales with a Lagrangian depending not only on the independent variable, an unknown function and its delta derivative, but also on a delta indefinite integral that depends on the unknown function. Such kind of variational problems were considered by Euler himself and ha...

متن کامل

Numerical solution of variational problems via Haar wavelet quasilinearization technique

In this paper, a numerical solution based on Haar wavelet quasilinearization (HWQ) is used for finding the solution of nonlinear Euler-Lagrange equations which arise from the problems in calculus of variations. Some examples of variational problems are given and outcomes compared with exact solutions to demonstrate the accuracy and efficiency of the method.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Eur. J. Control

دوره 17  شماره 

صفحات  -

تاریخ انتشار 2011